
it moves along the logarithmic axis. Two other features of logarithmic graphs
should be mentioned. First, there is no zero on a logarithmic scale, so

logarithmic variables cannot be plotted at the zero level. Second, any straight
line in a logarithmic, or semilogarithmic, graph represents a geometric
progression, meaning numbers like 2,4,8,16,32, . . . that increase by a constant
proportion. Any curve that does not plot as a straight line does not represent a
geometric progression. (We will explain this point below.)

Logarithmic graphs are important for two reasons:
1. They conveniently present data that vary over a wide range. Figure 2

does precisely this: the death rate for disease C has a few values as small as
3, and the death rate for disease B has values as large as 200. With an

arithmetic Y axis, we would face a dilemma in the choice of scale. If we should
calibrate the Y axis for the large rates of disease B, then the small rates of
disease C would nearly vanish into obscurity because they would fall into a thin
band along the bottom of the chart. But if we should calibrate the Y axis for
the small rates, then the Y axis would have to be extremely long to accommodate
the large rates; indeed, a vast empty space would appear on the graph between
the two plots. A logarithmic Y axis lets us avoid the dilemma. Logarithmic
ruling spreads apart small values, so that small rates for disease C become
distinct; yet large rates for disease B can also be satisfactorily plotted
without requiring the Y axis to have an unwieldy length.

2. A logarithmic graph shows proportional, or percentage, changes in a
variable. Neither the arithmetic amount of change nor the variable's value at
any point is of major importance in typical logarithmic graphs. To explain how
proportional changes can be deduced from a logarithmic graph we must go back to
the point made above: geometric progressions, with constant percentage changes,
plot as straight lines on a logarithmic scale. A straight line results because
the logarithms of a geometric progression form an arithmetic progression. For
example, the common logarithms of 10, 100, 1,000, 10,000, . . . are,
respectively, 1, 2, 3, 4, . . ., an arithmetic sequence which forms a straight
line on a regular arithmetic scale. And the common logarithms of 2, 4, 8, 16,
32, . . . likewise form another arithmetic sequence which would plot as a

straight line. It is actually logarithms that are being plotted in logarithmic
graphs; that is, the plot of actual data points on a logarithmic scale is
equivalent to a plot of corresponding logarithms on an arithmetic scale. And
that is why a logarithmic axis becomes increasingly compressed.

The conclusion from these ideas—we must hold it in mind always when looking
at logarithmic plots—is that equal distances on a logarithmic scale represent
equal percentage changes, whereas equal distances on an arithmetic scale
represent equal numerical changes. And a corollary of this conclusion is that
equal slopes (or degrees of slant) on two logarithmic plots indicate equal rates
of percentage change. Applying these generalizations in Figure 2, we see that
for disease C the mortality rate dropped 50% between 1900 and 1912, then halved
itself again between 1912 and 1918. (Three dots are placed on the plot for
disease C so that the reader may project them to the axes and verify the
preceding sentence.) For disease B the mortality rate dropped 50% between 1900
and about 1922; but as of 1938, when the study of disease B ended, the halving
had not been repeated. (The two dots on the plot for disease B should be
projected to the axes exactly as were the three dots for disease C.) Comparing
the general downward slopes of the two plots, we see that the rate of percentage
change in mortality from disease B is less than the rate of percentage change in
mortality from disease C.


